a^2+2a+20=180

Simple and best practice solution for a^2+2a+20=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for a^2+2a+20=180 equation:



a^2+2a+20=180
We move all terms to the left:
a^2+2a+20-(180)=0
We add all the numbers together, and all the variables
a^2+2a-160=0
a = 1; b = 2; c = -160;
Δ = b2-4ac
Δ = 22-4·1·(-160)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{161}}{2*1}=\frac{-2-2\sqrt{161}}{2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{161}}{2*1}=\frac{-2+2\sqrt{161}}{2} $

See similar equations:

| 6(2n+5)=6 | | 4x+7x-2x-5=22 | | 10/(2x-3)=2 | | -4x(2x-3)=-20 | | 10x=-7x | |   1.2x=1.8 | | X+20=x+3/4 | | 9x+9/2=-108 | | 25x-2=125x | | 3x-7=6x+7 | | -2(x+1)-4=10 | | 3(x-2)-10=-34 | | 8-2y=-14 | | 19x-22=29-7x | | 3.69+x=7.48 | | x/5=5/4 | | 36=42-y | | 6x-12/5=36 | | 5=w−654 | | 4x^2-2x+5=2 | | 2(x-1)+3/5=-6 | | 3x^2+2x-11=4x-10 | | 27=3^2x | | 6+5x-3x=12 | | -3(x+1)-5=23 | | x/6+19=-8 | | 3x^2+44=7x^2-82 | | 7x-40=3x+112 | | -7(4x-2)=-14 | | Y6=2/3x | | 17=v/5+12 | | x=5=3 |

Equations solver categories